(** Build a module with the result from another one module *) open StdLabels (** Make a module lazy *) module Lazier (E : S.Expression) : S.Expression with type t' = E.t' Lazy.t and type t = E.t Lazy.t = struct type t = E.t Lazy.t type t' = E.t' Lazy.t let v : E.t Lazy.t -> E.t' Lazy.t = Lazy.map E.v let integer : S.pos -> string -> t = fun pos i -> lazy (E.integer pos i) let ident : (S.pos, t) S.variable -> t = fun { pos; name : string; index : t option } -> lazy (E.ident { pos; name; index = Option.map Lazy.force index }) let literal : S.pos -> t T.literal list -> t = fun pos litts -> lazy (let e_litts = List.map litts ~f:(T.map_litteral ~f:Lazy.force) in E.literal pos e_litts) let function_ : S.pos -> T.function_ -> t list -> t = fun pos f e -> lazy (let e' = List.map ~f:Lazy.force e in E.function_ pos f e') let uoperator : S.pos -> T.uoperator -> t -> t = fun pos op t -> let t' = lazy (E.uoperator pos op (Lazy.force t)) in t' let boperator : S.pos -> T.boperator -> t -> t -> t = fun pos op t1 t2 -> let t' = lazy (E.boperator pos op (Lazy.force t1) (Lazy.force t2)) in t' end (** Build an expression module with the result from another expression. The signature of the fuctions is a bit different, as they all receive the result from the previous evaluated element in argument. *) module Expression (E : S.Expression) = struct module type SIG = sig type t type t' (* Override the type [t] in the definition of all the functions. The signatures differs a bit from the standard signature as they get the result from E.t in last argument *) val ident : (S.pos, E.t' Lazy.t * t) S.variable -> E.t' Lazy.t -> t val integer : S.pos -> string -> E.t' Lazy.t -> t val literal : S.pos -> (E.t' Lazy.t * t) T.literal list -> E.t' Lazy.t -> t val function_ : S.pos -> T.function_ -> (E.t' Lazy.t * t) list -> E.t' Lazy.t -> t val uoperator : S.pos -> T.uoperator -> E.t' Lazy.t * t -> E.t' Lazy.t -> t val boperator : S.pos -> T.boperator -> E.t' Lazy.t * t -> E.t' Lazy.t * t -> E.t' Lazy.t -> t val v : E.t' Lazy.t * t -> t' (** Convert from the internal representation to the external one. *) end (* Create a lazy version of the module *) module E = Lazier (E) module Make (M : SIG) : S.Expression with type t' = M.t' = struct type t = E.t * M.t type t' = M.t' let v' : E.t -> E.t' = E.v let v : t -> t' = fun (type_of, v) -> M.v (v' type_of, v) let ident : (S.pos, t) S.variable -> t = fun { pos; name : string; index : t option } -> let t' = E.ident { pos; name; index = Option.map fst index } in let index' = Option.map (fun (e, m) -> (v' e, m)) index in (t', M.ident { pos; name; index = index' } (v' t')) let integer : S.pos -> string -> t = fun pos i -> let t' = E.integer pos i in (t', M.integer pos i (v' t')) let literal : S.pos -> t T.literal list -> t = fun pos litts -> let litts' = List.map litts ~f:(T.map_litteral ~f:(fun (e, m) -> (v' e, m))) in let t' = let e_litts = List.map litts ~f:(T.map_litteral ~f:fst) in E.literal pos e_litts in (t', M.literal pos litts' (v' t')) let function_ : S.pos -> T.function_ -> t list -> t = fun pos f expressions -> let e = List.map ~f:fst expressions and expressions' = List.map ~f:(fun (e, m) -> (v' e, m)) expressions in let t' = E.function_ pos f e in (t', M.function_ pos f expressions' (v' t')) let uoperator : S.pos -> T.uoperator -> t -> t = fun pos op (t, expr) -> let t' = E.uoperator pos op t in (t', M.uoperator pos op (v' t, expr) (v' t')) let boperator : S.pos -> T.boperator -> t -> t -> t = fun pos op (t1, expr1) (t2, expr2) -> let t' = E.boperator pos op t1 t2 in (t', M.boperator pos op (v' t1, expr1) (v' t2, expr2) (v' t')) end end