module Tree = Qsp_syntax.Tree module Ast = Tree.Ast module Check = Qsp_syntax.Check module S = Qsp_syntax.S module T = Qsp_syntax.T let location_id, e1 = Check.build (module Tree) module Parser = Check.Make (struct let t = [| e1 |] end) let _position = (Lexing.dummy_pos, Lexing.dummy_pos) type 'a location = 'a * 'a Ast.statement list [@@deriving eq, show] let get_location : (S.pos location, Qsp_syntax.Report.t) result -> S.pos location = function | Ok e -> e | Error e -> let msg = Format.asprintf "%a" Qsp_syntax.Report.pp e in raise (Failure msg) (** Run the parser with the given expression and return the result *) let parse : string -> (S.pos location, Qsp_syntax.Report.t) result = fun content -> let lexing = Sedlexing.Latin1.from_string content |> Qparser.Lexbuf.from_lexbuf in let context = Parser.initialize () in Qparser.Analyzer.parse (module Parser) lexing context |> Result.map (fun v -> (* Uncatched excteptions here, but we are in the tests… If it’s fail here I have an error in the code. *) Array.get v.Qparser.Analyzer.content 0 |> Check.get location_id |> Option.get) let location : S.pos location Alcotest.testable = let equal = equal_location (fun _ _ -> true) in let pp = pp_location (fun formater _ -> Format.fprintf formater "_position") in Alcotest.testable pp equal let test_empty_location () = let expected = (_position, []) and actual = get_location @@ parse {|# Location ------- |} and msg = "Empty location" in Alcotest.(check' location ~msg ~expected ~actual) let test_location_without_space () = let expected = (_position, []) and actual = get_location @@ parse {|#Location ------- |} and msg = "Empty location" in Alcotest.(check' location ~msg ~expected ~actual) let test_location_without_database () = let expected = (_position, []) and actual = get_location @@ parse {|# $Location ------- |} and msg = "Location without database" in let () = Alcotest.(check' location ~msg ~expected ~actual) in let actual = get_location @@ parse {|# !Location ------- |} in let () = Alcotest.(check' location ~msg ~expected ~actual) in let actual = get_location @@ parse {|# ^Location ------- |} in Alcotest.(check' location ~msg ~expected ~actual) let _test_instruction : string -> S.pos Ast.statement list -> unit = fun literal expected -> let expected = (_position, expected) and _location = Printf.sprintf {|# Location %s ------- |} literal in let actual = get_location @@ parse _location and msg = literal in Alcotest.(check' location ~msg ~expected ~actual) let test_numeric_expression () = _test_instruction "123" [ Expression (Integer (_position, "123")) ] let test_negative_numeric_expression () = _test_instruction "-123" [ Tree.Ast.Expression (Tree.Ast.Op (_position, T.Neg, Tree.Ast.Integer (_position, "123"))); ] let test_negative_numeric_expression2 () = let index = None in let var = { Ast.pos = _position; name = "CURTIMESUN"; index; local = false } in _test_instruction "-(780-CurTimeSun)" Ast. [ Expression (Op ( _position, Neg, BinaryOp (_position, Minus, Integer (_position, "780"), Ident var) )); ] let test_str_variable () = let index = None in let var = { Ast.pos = _position; name = "$VALUE"; index; local = false } in _test_instruction "$value" [ Expression (Ident var) ] let test_variable () = let index = None in let var = { Ast.pos = _position; name = "VALUE"; index; local = false } in _test_instruction "value" [ Expression (Ident var) ] let test_indexed_variable () = let index = Some Ast.(Integer (_position, "1")) in let var = { Ast.pos = _position; name = "VALUE"; index; local = false } in _test_instruction "value[1]" [ Expression (Ident var) ] let test_let_literal () = let index = None in let var = { Ast.pos = _position; name = "VALUE"; index; local = false } in _test_instruction "let value = '123'" Ast. [ Declaration (_position, var, Eq', Literal (_position, [ T.Text "123" ])); ] let test_set_array_append () = let var = { Ast.pos = _position; name = "$VALUE"; index = None; local = false } in _test_instruction "set $value[] = ''" Ast. [ Declaration (_position, var, Eq', Literal (_position, [ T.Text "" ])) ] let test_direct_assignation () = let index = None in let var = { Ast.pos = _position; name = "VALUE"; index; local = false } in _test_instruction "value = '123'" Ast. [ Declaration (_position, var, Eq', Literal (_position, [ T.Text "123" ])); ] let test_command_assignation () = let index = None in let st_1 = { Ast.pos = _position; name = "ST_1"; index; local = false } in _test_instruction "st_1 = input 'Enter the amount'" Ast. [ Declaration ( _position, st_1, Eq', Function ( _position, Input, [ Literal (_position, [ T.Text "Enter the amount" ]) ] ) ); ] let test_assignation2 () = let index = None in let var = { Ast.pos = _position; name = "VALUE"; index; local = false } in _test_instruction "set value += 123" Ast.[ Declaration (_position, var, Inc, Integer (_position, "123")) ] let test_multilie_literal () = let index = None in let var = { Ast.pos = _position; name = "VALUE"; index; local = false } in _test_instruction {| value = { $a = '123' }|} Ast. [ Declaration (_position, var, Eq', Literal (_position, [ T.Text "\n$a = '123'\n" ])); ] let test_nested_literal () = _test_instruction {| value = { { } }|} [ Ast.Declaration ( _position, { Ast.pos = _position; name = "VALUE"; index = None; local = false }, Qsp_syntax.T.Eq', Ast.Literal (_position, [ T.Text "\n\n {\n\n }\n" ]) ); ] let test_concat_literal () = _test_instruction {| '123' +'456' |} [ Ast.Expression (Ast.Literal (_position, [ T.Text "123" ])); Ast.Expression (Ast.Op ( _position, Qsp_syntax.T.Add, Ast.Literal (_position, [ T.Text "456" ]) )); ] let test_literal () = _test_instruction "'123'" [ Expression (Literal (_position, [ T.Text "123" ])) ] let test_qutoted_literal () = _test_instruction "'12''3'" [ Expression (Literal (_position, [ T.Text "12'3" ])) ] let test_multiline1 () = let content = {| apples = 5 pears = 10 |} in let index = None in let apples = { Ast.pos = _position; name = "APPLES"; index; local = false } and pears = { Ast.pos = _position; name = "PEARS"; index; local = false } and value_5 = Ast.Integer (_position, "5") and value_10 = Ast.Integer (_position, "10") in _test_instruction content Ast. [ Declaration (_position, apples, Eq', value_5); Declaration (_position, pears, Eq', value_10); ] let test_multiline2 () = let content = "apples = 5 & pears = 10" in let index = None in let apples = { Ast.pos = _position; name = "APPLES"; index; local = false } and pears = { Ast.pos = _position; name = "PEARS"; index; local = false } and value_5 = Ast.Integer (_position, "5") and value_10 = Ast.Integer (_position, "10") in _test_instruction content [ Declaration (_position, apples, Eq', value_5); Declaration (_position, pears, Eq', value_10); ] let test_equality () = let content = "apples = 5 = pears" in let index = None in let apples = { Ast.pos = _position; name = "APPLES"; index; local = false } and pears = { Ast.pos = _position; name = "PEARS"; index; local = false } and value_5 = Ast.Integer (_position, "5") in _test_instruction content [ Declaration (_position, apples, Eq', BinaryOp (_position, Eq, value_5, Ident pears)); ] let test_plus () = let content = {| apples = 5 + pears |} in let index = None in let apples = { Ast.pos = _position; name = "APPLES"; index; local = false } and pears = { Ast.pos = _position; name = "PEARS"; index; local = false } and value_5 = Ast.Integer (_position, "5") in _test_instruction content [ Declaration ( _position, apples, Eq', BinaryOp (_position, Plus, value_5, Ident pears) ); ] let test_plus_litt () = let content = {| 'five'+ pears |} in let index = None in let pears = { Ast.pos = _position; name = "PEARS"; index; local = false } in _test_instruction content [ Ast.( Expression (BinaryOp ( _position, Plus, Literal (_position, [ T.Text "five" ]), Ident pears ))); ] let test_concat () = let content = {| $firstName + ' ' + $lastName |} in _test_instruction content [ Tree.Ast.Expression (Tree.Ast.BinaryOp ( _position, Plus, Tree.Ast.BinaryOp ( _position, Plus, Tree.Ast.Ident { Tree.Ast.pos = _position; name = "$FIRSTNAME"; index = None; local = false; }, Tree.Ast.Literal (_position, [ T.Text " " ]) ), Tree.Ast.Ident { Tree.Ast.pos = _position; name = "$LASTNAME"; index = None; local = false; } )); ] let test_mod () = _test_instruction {|2 mod 1|} [ Tree.Ast.Expression (Tree.Ast.BinaryOp ( _position, T.Mod, Tree.Ast.Integer (_position, "2"), Tree.Ast.Integer (_position, "1") )); ] let test_comment () = _test_instruction "! Comment" [ Comment _position ] let test_comment2 () = let index = None in let a = { Ast.pos = _position; name = "A"; index; local = false } and value_0 = Ast.Integer (_position, "0") in _test_instruction "a = 0 &! Comment" Ast.[ Declaration (_position, a, Eq', value_0); Comment _position ] let test_comment3 () = _test_instruction {|!!1234 |} [ Comment _position ] (** The exclamation mark here is an operation and not a comment *) let test_comment4 () = let index = None in let a = { Ast.pos = _position; name = "A"; index; local = false } and value_0 = Ast.Integer (_position, "0") in _test_instruction "a = rand(0, 1) ! 0" [ Ast.( Declaration ( _position, a, Eq', BinaryOp ( _position, Neq, Function ( _position, Rand, [ Integer (_position, "0"); Integer (_position, "1") ] ), value_0 ) )); ] let test_comment5 () = _test_instruction "a = rand() &! Comment" [ Ast.Declaration ( _position, { Ast.pos = _position; name = "A"; index = None; local = false }, Qsp_syntax.T.Eq', Ast.Function (_position, Rand, []) ); Ast.Comment _position; ] let test_comment6 () = _test_instruction "gs 'stat' &!! It should be here, because some of the strigs have to be \ initialized" [ Ast.Call ( _position, Qsp_syntax.T.Gosub, [ Ast.Literal (_position, [ T.Text "stat" ]) ] ); Ast.Comment _position; ] let test_long_comment () = _test_instruction {| !'this part of the comment is inside single quotes' but "this is still part of the same comment because sometimes life is unfair." Oh yeah, {curly brackets also count}. This is still the same comment. |} [ Comment _position ] (** This test ensure that the unary operator is applied to the whole expression *) let test_precedence () = let index = None in let x = Ast.Ident { Ast.pos = _position; name = "X"; index; local = false } and y = Ast.Ident { Ast.pos = _position; name = "Y"; index; local = false } in _test_instruction "no x = y" Ast.[ Expression (Op (_position, No, BinaryOp (_position, Eq, x, y))) ] (** This test ensure that a ! is not considered as a comment in an expression *) let test_precedence2 () = let index = None in let x = { Ast.pos = _position; name = "X"; index; local = false } and y = Ast.Ident { Ast.pos = _position; name = "Y"; index; local = false } in _test_instruction "x = y ! 0" Ast. [ Declaration ( _position, x, Eq', BinaryOp (_position, Neq, y, Integer (_position, "0")) ); ] let test_if () = let index = Some Ast.(Integer (_position, "0")) in let args = Ast.(Ident { pos = _position; name = "$ARGS"; index; local = false }) and expr1 = Ast.(Literal (_position, [ T.Text "blockA" ])) and expr2 = Ast.(Expression (Literal (_position, [ T.Text "You are in block A" ]))) in _test_instruction {| if $ARGS[0] = 'blockA': 'You are in block A' end |} Ast. [ If { loc = _position; then_ = (_position, BinaryOp (_position, Eq, args, expr1), [ expr2 ]); elifs = []; else_ = []; }; ] let test_if_chained () = let value_0 = Ast.Integer (_position, "0") in _test_instruction {| if 0: 0 end &! -- |} Ast. [ If { loc = _position; then_ = (_position, value_0, [ Expression value_0 ]); elifs = []; else_ = []; }; Comment _position; ] let test_if_equality () = _test_instruction {| if 0 = 0: end &! -- |} [ Ast.If { loc = _position; then_ = ( _position, Ast.BinaryOp ( _position, Qsp_syntax.T.Eq, Ast.Integer (_position, "0"), Ast.Integer (_position, "0") ), [] ); elifs = []; else_ = []; }; Ast.Comment _position; ] let test_if_inline () = let value_0 = Ast.Integer (_position, "0") in _test_instruction "if 0: 0 else 0" Ast. [ If { loc = _position; then_ = (_position, value_0, [ Expression value_0 ]); elifs = []; else_ = [ Expression value_0 ]; }; ] let test_if_inline_comment () = let value_0 = Ast.Integer (_position, "0") in _test_instruction "if 0: 0 else 0 &! comment " Ast. [ If { loc = _position; then_ = (_position, value_0, [ Expression value_0 ]); elifs = []; else_ = [ Expression value_0 ]; }; Comment _position; ] let test_if_inline_comment2 () = _test_instruction "if 0: 1 & !! Comment" [ Ast.If { loc = _position; then_ = ( _position, Ast.Integer (_position, "0"), [ Ast.Expression (Ast.Integer (_position, "1")); Ast.Comment _position; ] ); elifs = []; else_ = []; }; ] let test_if_inline_act () = _test_instruction "if 1 and hour >= 8: minut += 1 & act 'go': gt 'go'" [ Ast.If { loc = _position; then_ = ( _position, Ast.BinaryOp ( _position, Qsp_syntax.T.And, Ast.Integer (_position, "1"), Ast.BinaryOp ( _position, Qsp_syntax.T.Gte, Ast.Ident { Ast.pos = _position; name = "HOUR"; index = None; local = false; }, Ast.Integer (_position, "8") ) ), [ Ast.Declaration ( _position, { Ast.pos = _position; name = "MINUT"; index = None; local = false; }, Qsp_syntax.T.Inc, Ast.Integer (_position, "1") ); Ast.Act { loc = _position; label = Ast.Literal (_position, [ T.Text "go" ]); statements = [ Ast.Call ( _position, Qsp_syntax.T.Goto, [ Ast.Literal (_position, [ T.Text "go" ]) ] ); ]; }; ] ); elifs = []; else_ = []; }; ] let test_if_multiline () = _test_instruction {|if 1 _ and _hour >= 8: 1|} [ Ast.If { loc = _position; then_ = ( _position, Ast.BinaryOp ( _position, Qsp_syntax.T.And, Ast.Integer (_position, "1"), Ast.BinaryOp ( _position, Qsp_syntax.T.Gte, Ast.Ident { Ast.pos = _position; name = "_HOUR"; index = None; local = false; }, Ast.Integer (_position, "8") ) ), [ Tree.Ast.Expression (Tree.Ast.Integer (_position, "1")) ] ); elifs = []; else_ = []; }; ] let test_if_inline_act2 () = _test_instruction "if 1: act 'go': gt 'go' &! comment " [ Ast.If { loc = _position; then_ = ( _position, Ast.Integer (_position, "1"), [ Ast.Act { loc = _position; label = Ast.Literal (_position, [ T.Text "go" ]); statements = [ Ast.Call ( _position, Qsp_syntax.T.Goto, [ Ast.Literal (_position, [ T.Text "go" ]) ] ); Ast.Comment _position; ]; }; ] ); elifs = []; else_ = []; }; ] let test_precedence3 () = let index = Some Ast.(Integer (_position, "0")) in let args = Ast.(Ident { pos = _position; name = "$ARGS"; index; local = false }) and expr1 = Ast.(Literal (_position, [ T.Text "blockA" ])) and expr2 = Ast.(Expression (Literal (_position, [ T.Text "You are in block A" ]))) and expr3 = Ast.(Expression (Integer (_position, "0"))) in _test_instruction {| if $ARGS[0] = 'blockA': 'You are in block A' & 0|} Ast. [ If { loc = _position; then_ = ( _position, BinaryOp (_position, Eq, args, expr1), [ expr2; expr3 ] ); elifs = []; else_ = []; }; ] let test_gs () = _test_instruction "gs '123'" [ Ast.( Call ( _position, Qsp_syntax.T.Gosub, [ Literal (_position, [ T.Text "123" ]) ] )); ] let test_gt () = _test_instruction "gt $curloc" [ Ast.Call ( _position, Qsp_syntax.T.Goto, [ Ast.Ident { Ast.pos = _position; name = "$CURLOC"; index = None; local = false; }; ] ); ] let test_nl () = _test_instruction "*NL 'It'" [ Ast.Call ( _position, Qsp_syntax.T.Nl', [ Ast.Literal (_position, [ T.Text "It" ]) ] ); ] let test_function () = _test_instruction "iif(123, 1, 0)" [ Ast.( Expression (Function ( _position, Iif, [ Integer (_position, "123"); Integer (_position, "1"); Integer (_position, "0"); ] ))); ] (** Include a space before the parameters *) let test_function2 () = _test_instruction "rand (0, 1)" [ Ast.( Expression (Function ( _position, Rand, [ Integer (_position, "0"); Integer (_position, "1") ] ))); ] (** The RND function does not have parens after the name *) let test_rnd () = _test_instruction "rnd" [ Tree.Ast.Expression (Tree.Ast.Function (_position, T.Rnd, [])) ] let test_precedence4 () = _test_instruction "trim()" Ast.[ Expression (Function (_position, Trim, [])) ] (** This should not be a keyword without arguments, followed by an expression *) let test_precedence5 () = _test_instruction "clear()" Ast.[ Call (_position, Qsp_syntax.T.Clear, []) ] let test_precedence6 () = _test_instruction "(1 = 0 and 2 ! 3)" [ Ast.Expression (Ast.BinaryOp ( _position, And, Ast.BinaryOp ( _position, Eq, Ast.Integer (_position, "1"), Ast.Integer (_position, "0") ), Ast.BinaryOp ( _position, Neq, Ast.Integer (_position, "2"), Ast.Integer (_position, "3") ) )); ] (** An identifier cannot start by a number *0 is a product and not an identifier *) let test_operator () = let index = None in let a = { Ast.pos = _position; name = "A"; index; local = false } and value_0 = Ast.Integer (_position, "0") in _test_instruction "a *0" Ast.[ Expression (BinaryOp (_position, Product, Ident a, value_0)) ] let test_operator2 () = let value_0 = Ast.Integer (_position, "0") in _test_instruction "0 *rand()" Ast. [ Expression (BinaryOp (_position, Product, value_0, Function (_position, Rand, []))); ] let test_dyneval () = _test_instruction "dyneval ''" [ Ast.Expression (Ast.Function (_position, Dyneval, [ Ast.Literal (_position, [ T.Text "" ]) ])); ] (** The parens after input are considered as arguments for the function, not a following expression. This expression is a boolean. *) let test_input () = _test_instruction "( input('') = '' )" [ Tree.Ast.Expression (Tree.Ast.BinaryOp ( _position, Eq, Tree.Ast.Function ( _position, Input, [ Tree.Ast.Literal (_position, [ T.Text "" ]) ] ), Tree.Ast.Literal (_position, [ T.Text "" ]) )); ] let test_mutiple_inline_ifs () = _test_instruction "if 1 > 0: 1 else if 1 < 0: 0" [ Tree.Ast.If { loc = _position; then_ = ( _position, Tree.Ast.BinaryOp ( _position, Gt, Tree.Ast.Integer (_position, "1"), Tree.Ast.Integer (_position, "0") ), [ Tree.Ast.Expression (Tree.Ast.Integer (_position, "1")) ] ); elifs = []; else_ = [ Tree.Ast.If { loc = _position; then_ = ( _position, Tree.Ast.BinaryOp ( _position, Lt, Tree.Ast.Integer (_position, "1"), Tree.Ast.Integer (_position, "0") ), [ Tree.Ast.Expression (Tree.Ast.Integer (_position, "0")); ] ); elifs = []; else_ = []; }; ]; }; ] (** The boolean comparaison has greater precedence than arithmetic operator *) let test_precedence7 () = _test_instruction "(1 + 1 = '')" [ Tree.Ast.Expression (Tree.Ast.BinaryOp ( _position, Eq, Tree.Ast.BinaryOp ( _position, Plus, Tree.Ast.Integer (_position, "1"), Tree.Ast.Integer (_position, "1") ), Tree.Ast.Literal (_position, [ T.Text "" ]) )); ] (** The OR operator has greater precedence than boolean comparaison *) let test_precedence8 () = _test_instruction "(0 = 1 or 0 = 1)" [ Tree.Ast.Expression (Tree.Ast.BinaryOp ( _position, Or, Tree.Ast.BinaryOp ( _position, Eq, Tree.Ast.Integer (_position, "0"), Tree.Ast.Integer (_position, "1") ), Tree.Ast.BinaryOp ( _position, Eq, Tree.Ast.Integer (_position, "0"), Tree.Ast.Integer (_position, "1") ) )); ] (** Test showing the - should be considered as an operator and cannot be aggregated inside the integer value. *) let minus_operator () = _test_instruction {|day-7|} [ Tree.Ast.Expression (Tree.Ast.BinaryOp ( _position, T.Minus, Tree.Ast.Ident { Tree.Ast.pos = _position; name = "DAY"; index = None; local = false; }, Tree.Ast.Integer (_position, "7") )); ] (** STATTXT was considered as a function and raised an error in the syntax *) let test_stattxt () = _test_instruction "$value = $stattxt" [ Tree.Ast.Declaration ( _position, { Tree.Ast.pos = _position; name = "$VALUE"; index = None; local = false; }, T.Eq', Tree.Ast.Ident { Tree.Ast.pos = _position; name = "$STATTXT"; index = None; local = false; } ); ] let test_for_end () = _test_instruction {|for a = 1 to 10: end|} [ Tree.Ast.For { loc = _position; variable = { Tree.Ast.pos = _position; name = "A"; index = None; local = false; }; start = Tree.Ast.Integer (_position, "1"); to_ = Tree.Ast.Integer (_position, "10"); step = None; statements = []; }; ] let test_for_end_with_step () = _test_instruction {|for a = 1 to 10 step rnd: end|} [ Tree.Ast.For { loc = _position; variable = { Tree.Ast.pos = _position; name = "A"; index = None; local = false; }; start = Tree.Ast.Integer (_position, "1"); to_ = Tree.Ast.Integer (_position, "10"); step = Some (Tree.Ast.Function (_position, T.Rnd, [])); statements = []; }; ] let test_local () = _test_instruction {|local tempora = 12|} [ Tree.Ast.Declaration ( _position, { Tree.Ast.pos = _position; name = "TEMPORA"; index = None; local = true; }, T.Eq', Tree.Ast.Integer (_position, "12") ); ] let test_local_for () = _test_instruction {|for local a = 1 to 10: end|} [ Tree.Ast.For { loc = _position; variable = { Tree.Ast.pos = _position; name = "A"; index = None; local = true }; start = Tree.Ast.Integer (_position, "1"); to_ = Tree.Ast.Integer (_position, "10"); step = None; statements = []; }; ] let inline_for () = _test_instruction {|for i = 0 to 5: msg i|} [ Tree.Ast.For { loc = _position; variable = { Tree.Ast.pos = _position; name = "I"; index = None; local = false; }; start = Tree.Ast.Integer (_position, "0"); to_ = Tree.Ast.Integer (_position, "5"); step = None; statements = [ Tree.Ast.Call ( _position, T.Msg, [ Tree.Ast.Ident { Tree.Ast.pos = _position; name = "I"; index = None; local = false; }; ] ); ]; }; ] let test = ( "Syntax", [ Alcotest.test_case "Location" `Quick test_empty_location; Alcotest.test_case "Location" `Quick test_location_without_space; Alcotest.test_case "Location" `Quick test_location_without_database; Alcotest.test_case " Numeric expression" `Quick test_numeric_expression; Alcotest.test_case "-Numeric expression" `Quick test_negative_numeric_expression; Alcotest.test_case "-Numeric expression2" `Quick test_negative_numeric_expression2; Alcotest.test_case "Minus op" `Quick minus_operator; Alcotest.test_case "$Variable expression" `Quick test_str_variable; Alcotest.test_case " Variable expression" `Quick test_variable; Alcotest.test_case "Indexed Variable expression" `Quick test_indexed_variable; Alcotest.test_case "Let instruction" `Quick test_let_literal; Alcotest.test_case "Set array_append" `Quick test_set_array_append; Alcotest.test_case "Variable_assignation" `Quick test_direct_assignation; Alcotest.test_case "Command assignation" `Quick test_command_assignation; Alcotest.test_case "Variable_assignation2" `Quick test_assignation2; Alcotest.test_case "Literal" `Quick test_literal; Alcotest.test_case "Literal2" `Quick test_qutoted_literal; Alcotest.test_case "Literal3" `Quick test_multilie_literal; Alcotest.test_case "Concat Literal" `Quick test_concat_literal; Alcotest.test_case "Nested Literal" `Quick test_nested_literal; Alcotest.test_case "Multiline1" `Quick test_multiline1; Alcotest.test_case "Multiline2" `Quick test_multiline2; Alcotest.test_case "Equality" `Quick test_equality; Alcotest.test_case "Plus" `Quick test_plus; Alcotest.test_case "Plus_litt" `Quick test_plus_litt; Alcotest.test_case "PlusChained" `Quick test_concat; Alcotest.test_case "Mod operator" `Quick test_mod; Alcotest.test_case "Comment" `Quick test_comment; Alcotest.test_case "Comment2" `Quick test_comment2; Alcotest.test_case "Comment3" `Quick test_comment3; Alcotest.test_case "Comment4" `Quick test_comment4; Alcotest.test_case "Comment5" `Quick test_comment5; Alcotest.test_case "Comment6" `Quick test_comment6; Alcotest.test_case "Multiline Comment" `Quick test_long_comment; Alcotest.test_case "If" `Quick test_if; Alcotest.test_case "If_chained" `Quick test_if_chained; Alcotest.test_case "If_equality" `Quick test_if_equality; Alcotest.test_case "If inline" `Quick test_if_inline; Alcotest.test_case "If inline &!" `Quick test_if_inline_comment; Alcotest.test_case "If inline & !!" `Quick test_if_inline_comment2; Alcotest.test_case "If : act" `Quick test_if_inline_act; Alcotest.test_case "If _ and " `Quick test_if_multiline; Alcotest.test_case "If : act: &!" `Quick test_if_inline_act2; Alcotest.test_case "Precedence1" `Quick test_precedence; Alcotest.test_case "Precedence2" `Quick test_precedence2; Alcotest.test_case "Precedence3" `Quick test_precedence3; Alcotest.test_case "Call gs" `Quick test_gs; Alcotest.test_case "Call gt" `Quick test_gt; Alcotest.test_case "Call nl" `Quick test_nl; Alcotest.test_case "Function iif" `Quick test_function; Alcotest.test_case "Function rand" `Quick test_function2; Alcotest.test_case "Function rnd" `Quick test_rnd; Alcotest.test_case "Precedence4" `Quick test_precedence4; Alcotest.test_case "Precedence5" `Quick test_precedence5; Alcotest.test_case "Precedence6" `Quick test_precedence6; Alcotest.test_case "Operator" `Quick test_operator; Alcotest.test_case "Operator2" `Quick test_operator2; Alcotest.test_case "Dyneval" `Quick test_dyneval; Alcotest.test_case "Input" `Quick test_input; Alcotest.test_case "inline if else if" `Quick test_mutiple_inline_ifs; Alcotest.test_case "Precedence7" `Quick test_precedence7; Alcotest.test_case "Precedence8" `Quick test_precedence8; Alcotest.test_case "stattxt" `Quick test_stattxt; Alcotest.test_case "for ... end" `Quick test_for_end; Alcotest.test_case "for step ... end" `Quick test_for_end_with_step; Alcotest.test_case "local variable" `Quick test_local; Alcotest.test_case "local variable in for loop" `Quick test_local_for; Alcotest.test_case "inline for" `Quick inline_for; ] )